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Abstract
Fetal nutrition sets the stage for organ function in later life. In this review we discuss the fetal and
neonatal origins of brain function. Numerous research observations point to the importance of choline
for the developing fetus and neonate. This essential nutrient is involved in 1-carbon metabolism and
is the precursor for many important compounds, including phospholipids, acetylcholine, and the
methyl donor betaine. Dietary intake of choline by the pregnant mother and later by the infant directly
affects brain development and results in permanent changes in brain function. In rodents, perinatal
supplementation of choline enhances memory and learning functions, changes that endure across the
lifespan. Conversely, choline deficiency during these sensitive periods results in memory and
cognitive deficits that also persist. Furthermore, recent studies suggest that perinatal choline
supplementation can reduce the behavioral effects of prenatal stress and the cognitive effects of
prenatal alcohol exposure in offspring. The likely mechanism for these effects of choline involves
DNA methylation, altered gene expression, and associated changes in stem cell proliferation and
differentiation. The currently available animal data on choline and hippocampal development are
compelling, but studies are needed to detrermine whether the same is true in humans.

There is a growing body of evidence indicating that fetal and perinatal nutrition and growth
influence organ function in adult life (eg, blood pressure,1 heart disease,2 diabetes3). Evidence
also indicates that fetal and perinatal nutrition influence brain function in later life. Iron,4 zinc,
5 and folate6 nutriture in the fetus have been shown to alter brain development, and there is
compelling data showing that another important nutrient, choline, is essential for brain
formation. The human requirement for choline was officially recognized with the establishment
of adequate intake recommendations by the Institute of Medicine in 19987 (adequate intake
for infants age 0 to 6 months, 18 mg/kg/day). Choline is required for the structural integrity
and signaling functions of cell membranes, methyl group metabolism, and neurotransmitter
synthesis.8 Some of the choline needed to sustain normal organ function is synthesized de
novo, mainly in the liver,9 when phosphatidylethanolamine is methylated by
phosphatidylethanolamine N-methyltransferase (PEMT) to form phosphatidylcholine.
However, this mechanism does not always meet the demands for choline, and humans eating
diets deficient in choline develop fatty liver, liver damage, and muscle damage.10,11 In this
review, the main focus is on choline's role in brain development and function during the
perinatal period.
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CHOLINE, FOLIC ACID, AND METHIONINE METABOLISM ARE RELATED
The close interrelationship of choline, folic acid, vitamin B12, and methionine metabolism
intersects at the formation of methionine from homocysteine. Methionine can be formed
through 2 pathways: from homocysteine, using methyl groups donated by
methyltetrahydrofolate, or from methyl groups derived from betaine (which is derived from
choline).7 A disturbance in 1 of these metabolic pathways results in compensatory changes in
the other. For example, if 1 nutrient is in short supply, the other nutrient may be able to meet
some of the demand for it. Rats ingesting a low-choline diet have shown diminished tissue
concentrations of methionine and S-adenosylmethionine,12 as well as total folate.13 Humans
deprived of dietary choline have difficulty removing homocysteine after a methionine load and
develop elevated plasma homocysteine concentrations.14 Methotrexate, which is widely used
in the treatment of cancer, psoriasis and rheumatoid arthritis, limits the availability of methyl
groups by competitively inhibiting dihydrofolate reductase, a key enzyme in intracellular folate
metabolism. Rats treated with methotrexate have diminished pools of all choline metabolites
in the liver.15 Choline supplementation reverses the fatty liver caused by methotrexate
administration.16-18 Thus, methionine, methyltetrahydrofolate, and choline are fungible
sources of methyl groups. The fact that several parallel pathways exist to help ensure an
adequate supply of methyl donors demonstrates the physiological importance of these
compounds.

DIETARY SOURCES OF CHOLINE
The first database of choline content in foods is now available for scientists and clinicians to
use in assessing choline intake in humans19,20 (see also
http://www.nal.usda.gov/fnic/foodcomp/Data/Choline/Choline.html). Daily human choline
intake on an ad libitum diet averages 8.4 mg/kg for males and 6.7 mg/kg for females.21
However, Shaw et al,22 studying pregnant women in California, observed intakes of less than
half this amount in 25% of the women studied. Choline is found in a wide variety of foods;
excellent sources include liver, eggs, and wheat germ. In foods, choline exists in free and
esterified forms (as phosphocholine, glycerophosphocholine, phosphatidylcholine, and
sphingomyelin). Although these forms are likely fungible, there is some evidence that they
may have different bioavailability in neonates23 because the lipid-soluble forms bypass the
liver when absorbed from the diet, whereas the water-soluble forms enter the portal circulation
and are mostly absorbed by the liver. Human milk is rich in choline compounds, and soy-
derived infant formulas have lower total choline concentrations than either human milk or
bovine milk-derived formulas.24

CHOLINE AND THE FETUS
Choline is important during the perinatal period, especially for spinal cord and brain
development. There is a high rate of transfer of choline across the placenta,25,26 which actually
depletes maternal stores of choline.27 After birth, the baby gets choline from breast milk. (Note
that infant formulas do not always emulate human milk in terms of choline content.28) This
choline comes from the transfer of choline from maternal blood into milk against a
concentration gradient by the mammary epithelial cells.29,30 Blood and tissue concentrations
of choline (and esterified forms of choline) are extremely high in the fetus and neonate.31,
32 In the brain, a specific carrier mechanism transports free choline across the blood-brain
barrier at a rate proportional to the serum choline concentration.33 This choline transporter has
an especially high capacity in the neonate.34 High choline concentrations in the brain and
spinal cord are important for neural tube closure and brain development.
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Choline Is Needed for Normal Neural Tube Closure
One of the great successes of nutritional science has been the identification of folate's role in
normal neural tube closure. Adequate dietary folate intake by the mother during pregnancy can
prevent 50% or more of neural tube defects (NTDs) in infants.6 As discussed earlier, choline
and folate metabolism are highly interrelated. Inhibition of choline uptake and metabolism is
associated with the development of NTDs in mice.35,36 Recent evidence suggests this may
also be the case in humans; a retrospective case-control study (400 cases and 400 controls) of
periconceptional dietary choline intake in women in California found that the women in the
lowest quartile for daily choline intake had a 4-fold greater risk of having a baby with an NTD
than the women in the highest quartile for intake.22

Choline Availability Alters Brain Hippocampal Development
In rodent models, maternal dietary choline intake influences brain development (specifically
development of the hippocampus, the brain's memory center). In rats and mice, embryonic
days 11 to 18 (corresponding to day 56 of pregnancy through several months after birth in
humans) is the critical period for development of the hippocampus and septum.37 More choline
(about 3 times the dietary levels) during days 11 to 18 of gestation results in increased cell
proliferation and decreased apoptosis in rodent fetal hippocampal progenitor cells.38,39
Morphological alterations occur in the brain after choline supplementation during fetal life,
including larger soma and increased numbers of primary and secondary basal dendritic
branches.40,41

The brief exposure to extra choline in utero and subsequent changes in hippocampal structure
result in enhanced long-term potentiation, (an electrophysiological property of the
hippocampus),42-44 and enhanced visuospatial and auditory memory (by as much as 30%)
throughout the lifespan.41,45-50 Indeed, adult rodents decrement in memory as they age, but
offspring exposed to extra choline in utero do not show this “senility.”47,50 We discuss effects
on memory in more detail later in this review.

There is a dose–response relationship for exposure to choline in utero. Mothers fed choline-
deficient diets during late pregnancy had offspring with diminished progenitor cell proliferation
and increased apoptosis in the fetal hippocampus,38,39 insensitivity to long-term potentiation
in adulthood,42 and decremented visuospatial and auditory memory.49

It is interesting to note that the effects on hippocampal development of supplemental choline
in rodents are not seen when pups are supplemented during the first 2 weeks after birth, but
again become apparent with treatment during postnatal days 16 to 30.50 It is likely that the
high choline content of rat milk29 naturally supplements the pups during early postnatal life
and thus obscures the effect of added choline. The 2 periods of enhanced sensitivity to choline
correspond to the periods for neurogenesis (prenatal; the formation of cholinergic neurons) and
synaptogenesis (prenatal and postnatal; the formation of nerve-to-nerve connections) in the
hippocampus and basal forebrain. In humans, the architecture of the hippocampus continues
to develop after birth, and it closely resembles the adult structure by age 4 years.51 The
hippocampus is 1 of the few areas of the brain in which nerve cells continue to multiply slowly
in adults.52,53 Extrapolating from the rodent data, human sensitivity to the developmental
effects of choline would occur in utero through perhaps up to age 4 years.

Choline Effects in Models of Memory and Learning
As discussed earlier, choline supplementation or deficiency in utero and/or during the early
neonatal period results in permanent alteration of the structure of the memory center—the
hippocampus—of rodents. These structural changes have effects on memory function. Tonjes
et al54 showed that depriving neonatal rats (embryonic day 3 to 14) of maternal contact resulted
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in altered memory, and that these effects of deprivation could be reversed by choline. Animals
treated with supplemental choline during this period exhibited significantly higher memory
capacity in adulthood than animals who received choline later (embryonic day 15 to 28).54
Subsequently, Meck et al48 fed pregnant rat dams 3 times the normal dietary choline levels
and observed that their pups, studied at age 60 days, performed more accurately on both
working and reference memory components of memory tests on a radial maze than did controls.
The performance differences were evident from the initial testing and continued throughout
training.

Perinatal choline supplementation also enhanced timing and temporal memory.46
Investigators found significant differences related to proactive interference between choline-
supplemented rats and controls.49 Proactive interference refers to the interference of memories
from previous experiences with current memory; an example would be when a person thinks
she remembers where she parked her car but is confusing the actual location with the location
from a previous trip. When trials were massed in this later study, choline-supplemented rats
showed little proactive interference, whereas controls exhibited moderate levels and choline-
deficient rats displayed high levels of proactive interference. Prenatal supplementation
enhanced simultaneous temporal processing (ie, the animal's ability to divide attention between
multiple stimuli presented in parallel), increased attention to both the preferred and lesser
preferred signal, and delayed age-related decline in simultaneous temporal processing
(evaluated in animals age 24 to 36 months). On the other hand, whereas prenatal choline
deficiency also increased attention to the preferred signal, it decreased attention to the lesser
preferred signal and accelerated age-related decline.47 These studies in elderly rats confirm
that prenatal exposure to choline supplementation enhances memory function across the
lifespan. The converse is also upheld—prenatal choline deficiency impairs memory.50

Interestingly, neuroprotective effects of choline administration also have been observed. When
an N-methyl-D-aspartate receptor antagonist was administered to pregnant dams over a 6-day
period, choline supplementation protected against neurotoxicity from this chemical and
subsequent changes in brain function in both adolescent and adult off-spring.55,56 Another
protective effect of prenatal choline supplementation has been observed: Offspring of dams
fed either control or choline-deficient diets had highly impaired performance after seizures,
whereas offspring of choline-supplemented dams showed no impairment.57

Fetal alcohol syndrome is an important concern of pediatricians.58 Researchers have evaluated
whether postnatal choline treatment could reduce the cognitive deficits associated with prenatal
ethanol. Animals that had been exposed to ethanol in utero and not treated with choline
performed poorest on all memory tasks, whereas the ethanol-exposed, choline-treated animals
performed significantly better.59 In addition, the performance of the choline-treated did not
differ significantly from that of any of the control groups. Furthermore, postnatal choline
exposure improved performance in all groups, but the effect was greater in ethanol-treated
groups. Follow-up studies by this group examined perinatal choline supplementation in rats
that had been exposed to alcohol neonatally. These animals demonstrated hyperactivity
compared with controls and performed poorly on reversal learning tasks; perinatal choline
supplementation ameliorated this hyperactivity and improved reversal learning task
performance.60,61 These findings suggest that perinatal choline supplementation may alter
some of the structural and functional changes brought on by early alcohol exposure, and that
these effects last beyond the period of supplementation.

Currently, there are no published studies in humans confirming whether choline
supplementation during pregnancy enhances memory performance in offspring. A pilot study
is ongoing at the University of North Carolina at Chapel Hill.
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Possible Mechanisms for the Effects of Choline on Neural Tube and Brain Development
The mechanism whereby choline supplementation (or choline deficiency) in pregnant dams
results in permanent changes in memory of their offspring has not been fully elucidated.
Although the initial hypothesis was that the effect of neonatal choline supplementation on
memory is mediated by increased brain choline levels with subsequent increased acetylcholine
release, the amounts of choline that accumulate in fetal brains after treatment of pregnant dams
are not likely of sufficient magnitude to enhance acetylcholine release.62 Rather,
supplementing choline to dams results in significantly greater accumulation of phosphocholine
and betaine in fetal brains than is seen in controls.62

The effects of choline on neural tube closure and brain development could be mediated by
changes in the expression of genes. Dietary choline deficiency not only depletes choline and
choline metabolites in rats, but also decreases S-adenosylmethionine concentrations,12,63 with
resulting hypomethylation of DNA.64,65 DNA methylation occurs at cytosine bases that are
followed by guanosine (CpG sites)66 and influences many cellular events, including gene
transcription, genomic imprinting, and genomic stability.67-69 In mammals, between 60% and
90% of 5'-CpG-3' islands are methylated.70 When this modification occurs in promoter
regions, gene expression is altered;71 increased methylation is associated with gene silencing
or reduced gene expression.70 In cholinedeficient cells in culture, methylation of the cyclin-
dependent kinase inhibitor 3 gene promoter is decreased, resulting in overexpression of this
gene, which inhibits cell proliferation.72 We replicated this observation in brains of fetuses
from choline-deficient mothers and found that cyclin-dependent kinase inhibitor 3 was
hypomethylated and overexpressed in the neuroepithelium of the fetal hippocampus (submitted
for publication); we suggest that this is the likely molecular mechanism for decreased stem cell
proliferation in brains of these fetuses. This is not an outlandish hypothesis, because we already
know that dietary intake of methyl donors in pregnant mice can permanently alter the
expression of genes that control coat color in their pups.73,74 It is clear that the dietary
manipulation of methyl donors (either deficiency or supplementation) can have a profound
impact on gene expression and consequently on the homeostatic mechanisms that ensure the
normal function of physiological processes.

CHOLINE REQUIREMENTS MAY VARY WITH SEX
Premenopausal women, relative to males and postmenopausal women, have enhanced capacity
for de novo biosynthesis of choline moiety through PEMT in the liver. This likely reflects some
evolutionary pressure to optimize choline status in females capable of becoming pregnant.
Female rats are less sensitive to choline deficiency than are male rats,75 and female mice
produce more phosphatidylcholine via the PEMT pathway than do male mice.76 Estrogen
status may be important for this increased PEMT activity;77 compared with controls, estradiol-
treated castrated rats have greater hepatic PEMT activity.78 Thus, estrogen could be the
mediator of increased PEMT activity in women. During pregnancy, estradiol concentration
rises from approximately 1 nM to 60 nM at term,79,80 suggesting that the capacity for
endogenous synthesis of choline should be greatest during fetal development. As noted earlier,
demand for choline is especially high during pregnancy and lactation; transport of choline from
mother to fetus25,81 depletes maternal plasma choline in humans.82 Thus, despite an enhanced
capacity to synthesize choline, the demand for this nutrient is so high that it depletes the stores.
If endogenous choline biosynthesis were defective, then dietary intake requirements during
pregnancy likely would be much greater.

We are in the process of identifying genetic polymorphisms in genes that greatly increase the
likelihood that women require increased amounts of choline in the diet. We have examined
genes of choline metabolism and identified a polymorphism in the promoter region of the
PEMT gene (−939G→C; rs12325817), which is associated with greatly increased
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susceptibility to choline deficiency in women (submitted for publication). The frequency of
this variant allele was 0.74. We need to determine whether women with this genetic
polymorphism are especially likely to need more choline during pregnancy.

QUESTIONS FOR FUTURE RESEARCH
Are we varying the availability of choline when we feed infant formulas instead of milk? Does
the form and amount of choline ingested contribute to variations in memory observed between
humans? Does choline supplementation of pregnant women result in babies with enhanced
memory? Are the women who are eating low-choline diets and have an increased risk of having
babies with a neural defect22 also at risk of having babies with diminished memory function?
Do women with genetic polymorphisms in genes of choline metabolism need more dietary
choline? All of these are good questions that merit additional research.
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Glossary
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