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High Intake of Cholesterol Results in Less Atherogenic Low-Density
Lipoprotein Particles in Men and Women Independent

of Response Classification

Kristin L. Herron, Ingrid E. Lofgren, Matthew Sharman, Jeff S. Volek, and Maria Luz Fernandez

he influence of a high-cholesterol diet on the atherogenicity of the low-density lipoprotein (LDL) particle was examined by

easuring LDL peak diameter and composition, LDL susceptibility to oxidation, and the distribution of cholesterol between

DL subclasses. The crossover intervention randomly assigned 27 premenopausal women and 25 men (18 to 50 years) to an

gg (640 mg/d additional dietary cholesterol) or placebo (0 mg/d additional dietary cholesterol) diet for 30 days, followed by

3-week washout period. Subjects were classified as either hyperresponders (>2.5 mg/dL increase in plasma cholesterol for

ach 100 mg additional dietary cholesterol consumed) or hyporesponders to dietary cholesterol. Sex was found to have a

ignificant effect on 3 of the parameters examined. LDL peak diameter was significantly larger (P < .005) in females (26.78 �
.59 nm, n � 27) as compared with males (26.52 � 0.49 nm, n � 25), regardless of response to dietary cholesterol. The LDL

articles of the male participants also had a higher number of triglyceride (TG) and cholesteryl ester (CE) molecules (P < .01);

owever, cholesterol ester transfer protein (CETP) activity was higher in females (P < .05). Response classification also

evealed significant differences in the determination of LDL subclasses. Independent of sex, the LDL-1 particle (P < .05), which

s considered to be less atherogenic, was predominant in hyperresponders and this finding was associated with increased

holesterol intake (interactive effect, P < .001). In addition, CETP and lecithin: cholesterol acyltransferase (LCAT) activities

ere higher in hyperresponders during the egg period (interactive effect, P < .05). Sex, response to cholesterol intake, and

iet were not found to affect the susceptibility of LDL to oxidation (P > 0.5). Because LDL peak diameter was not decreased

nd the larger LDL-1 subclass was greater in hyperresponders following egg intake, these data indicate that the consumption

f a high-cholesterol diet does not negatively influence the atherogenicity of the LDL particle.
2004 Elsevier Inc. All rights reserved.
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URRENT DIETARY recommendations state that egg in-
take should be limited and that dietary cholesterol con-

umption above 300 mg/d has a significant negative influence
n plasma total cholesterol (TC) concentrations. These recom-
endations are based on the assumptions that all persons

xperience plasma fluctuations following intake of dietary cho-
esterol and that TC elevations translate directly to increased
isk for the development of atherosclerosis and coronary heart
isease (CHD). Because CHD is the leading cause of death in
he United States,1 it is important to examine variations in the
ndividual response to dietary cholesterol and to determine
hether egg intake influences risk factors, such as the athero-
enicity of the low-density lipoprotein (LDL) particle, which
ave been identified as important predictors of disease.
It is clear that the composition of the diet influences lipopro-

ein concentration, composition, and metabolism,2,3 which may
ffect the development of atherosclerosis and CHD. The asso-
iation between elevated LDL-cholesterol (LDL-C) and an
ncreased risk for CHD has been well documented.4 However,
DL particles are heterogeneous with regard to size, density,
omposition, charge, and atherogenicity.5 Based on their size,
hese particles have been identified as LDL-1 through LDL-7.
n this classification, larger numbers indicate a decrease in peak
article diameter. A predominance of small, dense LDL parti-
les (ie, LDL-3�), which are considered to be more athero-
enic than the larger more buoyant cholesteryl ester (CE)
nriched fraction (Pattern A subclass),6 would be representative
f the Pattern B subclass. This LDL subclass has been shown
o be associated with a 3-fold increase in CHD risk,7,8 which
ay be due to the easy entry of the smaller particles into the

rterial wall,9 their enhanced binding to the proteoglycans,10

nd their increased susceptibility to oxidation.6,8 This enhanced
usceptability may be due to lowered tocopherol content11 or
ncreased polyunsaturated fat concentration12 in the more dense

DL subclass. Furthermore, oxidized LDL possesses an in-

etabolism, Vol 53, No 6 (June), 2004: pp 823-830
reased atherogenicity due to its unregulated uptake by mac-
ophages and its role in foam cell production. In addition, the
maller lipoprotein particles have been shown to have de-
reased affinity for the LDL receptor,13,14 which would result in
ncreased plasma half-life that may enhance LDL anchorage to
he arterial wall.15

If egg intake does indeed have negative health implications,
s current recommendations suggest, consumption would be
xpected to result in the development of a more atherogenic
DL particle. Therefore, the main objective of this study was to
etermine LDL particle size and composition, susceptibility of
he particle to oxidation, and the distribution of cholesterol
cross LDL subclasses in men and women classified as hyper-
nd hyporesponders to a diet high in cholesterol.

MATERIALS AND METHODS

aterials

Liquid pasteurized whole eggs and cholesterol-free/fat-free eggs
placebo) were purchased from Better Brands (Windsor, CT). Enzy-
atic cholesterol, and triglyceride (TG) kits were obtained from
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824 HERRON ET AL
oche-Diagnostics (Indianapolis, IN). EDTA, phospholipids, and free
holesterol kits were obtained from Wako Pure Chemical (Osaka,
apan); aprotinin, sodium azide, and phenylmethylsulfonyl fluoride
PMSF) were obtained from Sigma Chemical (St Louis, MO). Malon-
ldehyde bis (diethyl acetal) was obtained from Aldrich (Arlington
eights, IL). Human insulin specific radioimmunoassay (RIA) kit was

rom Linco Research (St Charles, MO).

ubjects

A total of 40 men and 51 premenopausal women participated in the
ietary intervention.16,17 Of this population, plasma samples from a
ubset of men (n � 25) and premenopausal women (n � 27) were used
or the analysis reported in this study. Subjects were recruited from the
niversity community and were between the ages of 20 and 50 years.
he exclusion criteria for this study included the presence of hyper-
holesterolemia (cholesterol �240 mg/dL), hypertriglyceridemia
TGs � 300 mg/dL), hypertension, and diabetes. Furthermore, those
eceiving lipid-lowering drugs were also excluded.

xperimental Design

The experimental protocol was approved by the University of Con-
ecticut’s Institutional Review Board, and written informed consent
as obtained from each subject. The study utilized a randomized

rossover design, with subjects initially assigned to an egg or placebo
roup for 30 days, followed by a 3-week washout period, after which
he second dietary period began. Subjects assigned to the egg group
ere expected to consume the liquid equivalent of 3 whole eggs per
ay (adding approximately 640 mg/d cholesterol to the diet). In con-
rast, those assigned to the placebo consumed an identical weight of
holesterol-free and fat-free egg substitute (0 mg/d dietary cholesterol).
oth products were identical in terms of color and consistency and
iffered only in the fat and cholesterol content. Daily portions were
rovided in individual containers, and subjects were asked to return any
neaten portion at the end of the week.
Subjects were expected to adhere to the National Cholesterol Edu-

ation Program (NCEP) step I diet for the duration of the study, and
etailed dietary instructions were provided. The NCEP step I diet
ecommends that no more than 30% of total energy come from fat, with
aturated fat providing only 10% of the total. In addition, subjects were
nstructed to consume no more than 300 mg/d of dietary cholesterol in
heir self-selected diet. To ensure compliance with the dietary guide-
ines, subjects completed seven 24-hour dietary records during each
reatment period, which included 2 weekend days. Nutrient intake was
etermined using the Nutrition Data System for Research (NDS-R)
oftware version 4.0, developed by the Nutrition Coordinating Center,
niversity of Minnesota, Minneapolis, MN.
Two fasting (12 hour) blood samples were initially collected, on

ifferent days within the same week, into tubes containing 0.15 g/100
EDTA to determine baseline plasma lipids. Plasma was separated by

entrifugation at 1,500 � g for 20 minutes at 4°C and placed into vials
ontaining PMSF (0.05 g/100g), sodium azide (0.01 g/100 g) and
protinin (0.01 g/100 g). Two additional blood samples were collected
nd processed in the same manner at the end of each diet treatment and
ashout period. The variables of weight, blood pressure, level of

ctivity, smoking, and alcohol intake were also measured at baseline
nd after each dietary period to account for the possible influence of
hese factors on plasma lipid levels and lipoprotein metabolism.

lasma Lipids

TC was determined by enzymatic methods using Roche-Diagnostics
tandards and kits.18 High-density lipoprotein-cholesterol (HDL-C)
as measured in the supernatant after precipitation of apolipoprotein

19
apo) B-containing lipoproteins and LDL-C was determined using the a
riedewald equation.20 TG were determined using Roche-Diagnostics
its, which adjust for free glycerol. Our laboratory has been partici-
ating in the Centers for Disease Control-National Heart, Lung and
lood Institute (CDC-NHLBI) Lipid Standardization Program since
989 for quality control and standardization for plasma TC, HDL-C,
nd TG assays. Coefficients of variance assessed by the Standardization
rogram during the study period were 0.76 to 1.42 for TC, 1.71 to 2.72
or HDL-C, and 1.64 to 2.47 for TG.

lassification of Hyper- and Hyporesponders

As previously mentioned, a modest increase in TC of 2.2 to 2.5
g/dL may be considered normal in response to a 100-mg increase in

ietary cholesterol. For the purpose of this study, subjects who expe-
ienced an increase in TC � 2.5 mg/dL for each additional 100 mg of
ietary cholesterol consumed were considered hyperresponders.16,17

ecause the subjects were fed an additional 640 mg/d of dietary
holesterol (approximately 213 mg/large egg) during the egg period,
hose who experienced an increase in TC of �16 mg/dL were consid-
red hyperresponders. The remaining subjects who experienced fluc-
uations of �14 mg/dL (an increase in TC of 2.2 mg/dL for every 100

g of additional dietary cholesterol consumed) or had no change in TC
ere identified as hyporesponders. The reproducibility of individual
ifferences in response has been previously documented in several
ontrolled and field trials.21

lasma Cholesterol Ester Transfer Protein and Lecithin
holesterol Acyltransferase Activities

Plasma cholesterol ester transfer protein (CETP) activity was deter-
ined in plasma according to the method described by Ogawa and
ielding.22 This method measures the mass transfer of CE between
DL and apo B containing-lipoproteins. Thus, physiologic CETP

ctivity was assessed through an analysis of the decrease in HDL CE
ass between 0 and 6 hours, without lecithin cholesterol acyltrans-

erase (LCAT) inhibition. Samples were incubated at 37°C for 6 hours
n a shaking water bath. Following this period, total, HDL, and free
lasma cholesterol were measured, and previously described calcula-
ions were performed.23 LCAT activity was determined by an endog-
nous self-substrate method, which involves mass analysis of the
ecrease in plasma free cholesterol between 0 and 6 hours at 37°C.
ssays were performed concurrently with measurements of CETP.
oth of these methods have been standardized in our laboratory.

lasma Insulin

Insulin was measured in plasma using a RIA kit that utilizes the
ouble-antibody/PEG technique.24 Briefly, 100 �L plasma was incu-
ated with 125I-labeled human insulin and guinea pig antihuman insulin
ntiserum. After an overnight incubation, a precipitating reagent con-
aining goat antiguinea pig immunoglobulin G (IgG) was added and
amples were mixed and incubated for 20 minutes. Samples were then
entrifuged at 2,500 � g for 20 minutes, after which the liquid was
ecanted, and tubes containing the resulting pellet were each counted
or 1 minute using a Cobra II-Auto Gamma Counting System (Packard
nstruments, Meriden, CT).

DL Isolation and Characterization

LDL was isolated by sequential ultracentrifugation in an LE-80K
ltracentrifuge (Beckman Instruments, Palo Alto, CA) for 45 minutes
t 200,000 � g and 15°C, using a Ti-65 vertical rotor, as previously
escribed.25 The isolated lipoprotein samples were then dialyzed over-
ight (0.01% Na2EDTA, 0.9% NaCl pH 7.2 to 7.4) at 4°C.

LDL composition was calculated after the concentrations of the main
omponents, free cholesterol (FC),26 CE,27 TG,28 phospholipids (PL),

nd protein, had been determined. TC, FC, TG, and PL concentrations
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825DIETARY CHOLESTEROL AND LDL ATHEROGENICITY
ere measured using enzymatic methods. Esterified cholesterol was
alculated by subtracting FC from TC. Protein concentration was
easured by a modified Lowry procedure.29 The number of component
olecules of LDL was calculated assuming 1 apo B molecule (molec-

lar weight 550 kd) per particle. The molecular weights of TG, FC, CE,
nd PL used were 885.4, 386.6, 664, and 734, respectively.30

DL Size Determination

The Lipoprint LDL system (Quantimetrix Redondo Beach, CA),
hich utilizes nongradient high-resolution polyacrylamide gel electro-
horesis, was used to determine LDL peak particle diameter and
ubclass distribution. Briefly, 25 �L plasma was added to precast
olyacrylamide gel tubes and overlayed with 200 �L loading buffer.
ubes were then photopolymerized for approximately 30 minutes and

hen placed into the electrophoresis chamber. Electrophoresis buffer
Tris-hydroxymethyl aminomethane 66.1 g/100 g, boric acid 33.9
/100 g, pH 8.2 to 8.6) was added to the top and bottom portion of the
hamber. The gel was run for approximately 60 minutes at 36 mV or
ntil the HDL fraction was approximately 1 cm from the end of the
ube. Gels were allowed to sit for 30 minutes and then scanned with a
ensitometer. The Lipoprint system quantifies 6 different LDL sub-
lasses based on size. The majority of subjects did not have LDL-4, -5,
nd -6 in an amount that could be detected; therefore, only 3 fractions
re reported here. However, for those subjects who carried a detectable
mount of cholesterol in the smaller LDL fractions, these concentra-
ions were added into LDL-3 fraction.31

DL Susceptibility to Oxidation

The apo B-containing lipoprotein fraction, consisting of very–low-
ensity lipoprotein (VLDL,) intermediate-density lipoprotein (IDL),
nd LDL, was isolated from plasma by ultracentrifugation in an LE-
0K ultracentrifuge (Beckman Instruments, Palo Alto, CA) for 45
inutes at 200,000 � g and 15°C, using a Ti-65 vertical rotor.25

eparation was based on d � 1.063 mg/mL. Samples were dialyzed
vernight in an EDTA-free phosphate buffered saline (PBS; 10 nmol/L
aH2PO4, 0.15 mol/L NaCl, pH 7.4), at 4°C. In vitro LDL suscepti-
ility to oxidation was determined by the measurement of the formation
f thiobarbituric acid reactive substances (TBARS), after copper-me-
iated oxidation of the apo B-containing lipoprotein fraction, as pre-
iously reported.23 The lipid peroxide content was expressed as mal-
ndialdehyde equivalents.

ata Analysis

A 3-way repeated measures analysis of variance (ANOVA) was used
o analyze diet, sex, and response effects on the characteristics of the
DL particle with each subject during the egg or palcebo period as the

epeated measure. Significant interactions were detected by LSD pro-
ected test, and P � .05 was considered significant.

RESULTS

Of the 91 subjects who completed the study, 28 (14 women
nd 14 men) hyper- and 26 (13 women and 13 men) hypore-
ponders to dietary cholesterol were selected for the LDL
article analysis. No significant differences existed within this
ubset between dietary periods; however, men did have signif-
cantly (P � .001) higher body mass index (BMI) values
25.5 � 3.2 kg/m2, n � 25) than women (22.6 � 3.3 kg/m2,
� 27). As previously reported,16,17 an analysis of the 7-day

ietary records revealed that all subjects complied with the
equirements of the NCEP step I diet. A significantly greater
verage intake of 764.3 � 67.1 mg/d of dietary cholesterol

P � .0001) was reported during the egg as compared with the w
verage 166.9 � 118.3 mg/d consumed during the placebo
eriod. In addition, the average contribution of energy derived
rom total (31.4% � 5.5%) and saturated fat (10.9% � 2.4%)
uring the egg period was significantly higher (P � .01) than
otal (26.6% � 7.1%) and saturated fat (9.4% � 2.6%) during
he placebo period.

Plasma insulin was measured in these subjects to determine
hether dietary treatment would affect this hormone and influ-

nce the characteristics of the LDL during the egg or placebo
eriods. There were no significant differences in insulin due to
iet or individual response (data not shown). However, plasma
nsulin levels were higher (P � .05) in men (13.0 � 5.7 �U/L,

� 25) when compared with women (9.0 � 7.3 �U/L, n �
7). There was also a significant correlation between BMI and
lasma insulin for all subjects (r � .601, P � .0001).

he Effect of Diet, Sex, and Response on LDL Phenotype,
ubclass Distribution, and Peak Diameter

Of the men and women studied, 29 were classified as having
he pattern B phenotype during the placebo period, while 25
ere pattern A. During the egg period, all participants were

qually distributed (27 in each group) between the 2 pheno-
ypes. This indicates a nonsignificant shift of 5 participants
rom pattern B to A and 4 participants from pattern A to B
ollowing egg consumption (data not shown). The larger LDL
ubclass was determined to be more prominent in women when
ompared with men (Table 1). Furthermore, women had higher
oncentrations of LDL-1 regardless of response classification.
owever, independent of sex, hyperresponders were found to
ave significantly (P � .05) larger concentrations of the LDL-1
ubclass than their hypo-responsive counterparts. (Table 1).
urthermore, the analysis of LDL subclass indicated that a
ignificant (P � .001) interactive effect existed between diet
nd response, which indicated that hyperresponders had the
reatest level of LDL-1 following egg consumption. In contrast
o LDL-1, the distribution of cholesterol in LDL-2 was not
ndependently influenced by sex, dietary treatment, or response
o dietary cholesterol (Table 1). However, an interaction be-
ween sex, diet, and response (P � .01) was found with regard
o LDL-2, which showed that this particle was elevated in
emale hyperresponders following egg consumption and fol-
owing intake of the placebo for male hyperresponders. The
istribution of cholesterol in the smallest LDL subfraction
eported was influenced by sex, with the male population
aving a greater concentration of LDL-3 when compared with
omen (Table 1). Furthermore, LDL-3 was also highest in men
uring the egg as compared with the placebo period. The LDL
eak particle diameter was significantly (P � .01) larger in
omen than men (Table 1); however, it was affected by an

nteraction with response. Women classified as hyperre-
ponders had larger peak LDL diameter when compared with
yporesponders. In contrast, male hyporesponders had larger
DL peak diameter than hyperresponders (Table 1).

he Effect of Diet, Sex, and Response on LDL Oxidation and
he Activities of LCAT and CETP

Based on response classification, LDL-C concentrations

ere significantly higher in hyperresponders following egg
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onsumption, while hyporesponders experienced no change for
ither dietary period (Table 2). However, LDL oxidation was
ot affected by sex, diet, or response classification (Table 2). In

Table 1. Distribution of Cholesterol in LDL Subclasse

During the EG

LDL-1 (mg/dL)

Women
Hyper-responders (n � 14)

EGG 31.7 � 12.2a

SUB 28.1 � 10.4b

Hypo-responders (n � 13)
EGG 21.8 � 7.8c

SUB 21.9 � 8.0c

Men
Hyper-responders (n � 12)

EGG 23.3 � 8.4c

SUB 20.0 � 7.9c

Hypo-responders (n � 13)
EGG 18.2 � 8.8d

SUB 20.5 � 9.0c

Sex effect P � .05
Response effect P � .05
Diet effect NS
Interaction sex � response NS
Interaction sex � diet NS
Interaction response � diet P � .001
Interaction sex � diet � response NS

NOTE. Values are presented as mean � SD for the number of sub
uperscripts are significantly different as determined by 3-way ANOV
Abbreviations: EGG, egg; SUB, substitute; NS, not significant.

Table 2. Plasma LDL Cholesterol, LDL Oxidation, and

during the EG

LDL-C (mg/dL)

Apo
(TB

Women
Hyper-responders (n � 14)

EGG 114.6 � 32.0a

SUB 99.4 � 30.5b

Hypo-responders (n � 13)
EGG 90.4 � 25.4b

SUB 90.8 � 28.7b

Men
Hyper-responders (n � 12)

EGG 118.6 � 27.9a

SUB 91.9 � 21.3b

Hypo-responders (n � 13)
EGG 87.5 � 26.1b

SUB 89.7 � 27.1b

Sex effect NS
Response effect P � .0001
Diet effect P � .05
Interaction sex � response NS
Interaction sex � diet NS
Interaction response � diet P � .0001
Interaction sex � diet � response NS

NOTE. Values are presented as mean � SD for the number of s

uperscripts are significantly different as determined by 3-way ANOVA an
ontrast, plasma LCAT and CETP activities were significantly
odulated by the response to dietary cholesterol. Following

gg consumption, subjects classified as hyperresponders, re-

LDL Peak Diameter of Hypo- and Hyper-responders

SUB Periods

LDL-2 (mg/dL) LDL-3 (mg/dL)
LDL Peak

Diameter (nm)

22.1 � 10.7b 5.1 � 5.5a 26.90 � 0.25a

16.6 � 7.8a 4.1 � 5.5a 26.99 � 0.33a

19.4 � 10.5ab 4.5 � 5.5a 26.58 � 0.57b

19.1 � 11.5ab 4.6 � 6.8a 26.67 � 0.62b

19.6 � 8.2ab 16.6 � 16.2c 26.24 � 0.58b

25.6 � 5.6b 9.9 � 10.4bc 26.40 � 0.53b

20.5 � 5.6ab 6.8 � 6.1ab 26.75 � 0.35a

20.5 � 9.0ab 7.8 � 7.5b 26.67 � 0.52b

NS P � .01 P � .01
NS NS NS
NS P � .05 NS
NS NS P � .001
NS NS NS

P � .05 P � .001 NS
P � .01 P � .05 NS

indicated in parentheses. Values in the same column with different
d LSD as post hoc test.

and CETP Activities of Hypo- and Hyper-responders

SUB Periods

protein Oxidation
f MDA/non-HDL

protein)
LCAT (�mol/h � L

plasma)
CETP (�mol/h � L

plasma)

.8 � 10.1 18.5 � 7.9a 23.8 � 6.8a

.4 � 7.4 13.6 � 6.9a 23.0 � 4.7b

.3 � 7.0 12.2 � 6.1b 21.5 � 6.0b

.7 � 6.3 11.7 � 5.7b 19.7 � 4.2b

.8 � 8.5 18.5 � 11.1a 21.7 � 6.8a

.1 � 4.1 15.9 � 9.6b 18.5 � 4.4b

.5 � 5.2 13.5 � 5.9b 16.6 � 3.0b

.6 � 6.0 14.9 � 5.6b 19.1 � 6.6b

NS NS P � .01
NS P � .05 P � .05
NS NS NS
NS P � .05 NS
NS NS NS
NS NS NS
NS NS P � .05

ts indicated in parentheses. Values in the same row with different
s and

G or

jects
A an
LCAT

G or

B Lipo
ARS o

19
16

15
15

16
16

18
19

ubjec

d LSD as post hoc test.
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827DIETARY CHOLESTEROL AND LDL ATHEROGENICITY
ardless of gender, had higher activity of these components of
everse cholesterol transport (P � .05) (Table 2). In addition,
omen were found to have higher CETP activity than men (sex

ffect, P � .05).

he Effect of Diet, Sex, and Response on the Composition of
he LDL Particle

Sex and diet modulated the composition of the LDL particle
Table 3). The number of CE and TG molecules in LDL was
igher in men when compared with women (P � .01) (Table
). In addition, hyporesponders had a higher number of TG
olecules than was seen in the LDL particle of hyperre-

ponders. In contrast, the number of PL and FC molecules was
ot affected by sex, diet, or response classification (Table 3).

DISCUSSION

The link between genetics and LDL phenotype has been
xamined by various family studies.32 Loci near the LDL
eceptor gene on chromosome 19p, the apo C-III gene on
hromosome 11, and the CETP gene on chromosome 16 have
een identified33 because of their apparent association with
DL peak particle size. However, findings from twin studies
ontradict the possibility of complete genetic control over
henotype showing only a weak overall heritability of peak
article diameter in some cases.34 These findings suggest that
enetic predetermination of LDL phenotype may be modifiable
y environmental factors such as age, sex, adiposity, macronu-
rient composition of the diet, hormones, and drugs.35

It has been shown that expression of the Pattern B subclass
s greater in males older than 20 years compared with younger

36,37

Table 3. Number of CE, FC, TG, and PL Molecules in LDL o

CE

Women
Hyper-responders (n � 14)

EGG 1,117 � 239a

SUB 1,036 � 277a

Hypo-responders (n � 13)
EGG 1,020 � 220a

SUB 1,013 � 255a

Men
Hyper-responders (n � 14)

EGG 1,315 � 204c

SUB 1,149 � 248b

Hypo-responders (n � 13)
EGG 1,119 � 240b

SUB 1,213 � 328b

Sex effect P � .01
Response effect NS
Diet effect NS
Interaction sex � response NS
Interaction sex � diet NS
Interaction response � diet P � .05
Interaction sex � diet � response NS

NOTE. Values are presented as mean � SD for the number of s
uperscripts are significantly different as determined by 3-way ANOV
Abbreviations: CE, cholesteryl ester; FC, free cholesterol; TG, trigly
en or premenopausal women. In fact, the frequency of the H
DL pattern B phenotype in the general population is approx-
mately 30% in men and 15% to 20% in postmenopausal
omen.6 In the population from the current study, 70% of men
ere classified as having the B phenotype, while 37% of
omen were similarly identified. Therefore, as expected,
omen were found to have a greater predominance of the
DL-1 particle than men regardless of response classification.

t has been suggested that higher visceral adipose accumulation
n men may be the contributing factor to the sex difference seen
n the determination of LDL size.38 However, a comparison of
DL peak particle diameter between sex and response groups
howed that a significant difference only existed between fe-
ale and male hyperresponders with the latter having smaller

articles. This difference did not exist between male and female
yporesponders. In fact, male hyporesponders had a signifi-
antly higher peak diameter than their female counterparts
uring the egg period, with no differences being observed
ollowing consumption of the placebo. These findings suggest
hat the influence of sex may not be driving the differences seen
ithin these response groups. Therefore, perhaps the influence
f diet on LDL phenotype was most prominent in this study.
Existing dietary prescriptions for the treatment and preven-

ion of atherosclerosis and CHD are focused on reducing
lasma LDL-C levels through the limitation of cholesterol and
otal fat intake with specific emphasis on restriction of saturated
at. Studies39,40 that have examined the effects of such diets on
ipoprotein concentrations have shown a wide variation among
ndividuals with some concluding that a low-fat/high-carbohy-
rate diet may actually increase risk by causing a general
ncrease in plasma concentrations of TG41 and decreased

o- and Hyper-responders During the EGG or SUB Periods

No. of Molecules/LDL

FC TG PL

65 � 20 99 � 28a 579 � 95
58 � 15 96 � 29a 529 � 95

51 � 18 181 � 47b 531 � 82
54 � 20 178 � 37b 518 � 102

69 � 16 161 � 32b 537 � 53
65 � 62 179 � 46b 519 � 64

77 � 60 189 � 39bc 551 � 95
73 � 58 214 � 74c 586 � 111

NS P � .0001 NS
NS P � .0001 NS
NS NS NS
NS P � .05 NS
NS P � .05 NS
NS NS NS
NS NS NS

ts indicated in parentheses. Values in the same row with different
d LSD as post hoc test.
s; PL, phospholipids; NS, not significant.
f Hyp

b

c

ubjec
A an
DL-C. This response has been shown to be even 2-fold
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828 HERRON ET AL
reater in persons with the pattern B phenotype.42 It has been
uggested that these concomitant fluctuations would negate any
ositive effects of the lowered LDL-C achieved by the modi-
cation in macronutrient consumption. An examination of post-
randial lipoprotein metabolism suggests that the pattern B
ubclass is associated with an overall decrease in the clearance
ate of intravenous fat43 and an increase in the occurrence of
ipemia.44 Furthermore, with regard to LDL subclass, pattern A
ndividuals have also been found to have less of a reduction in
DL-C in response to a low-fat diet than those who have the
attern B phenotype.45,46 A shift to the pattern B subclass has
lso been detected in individuals initially classified as pattern A
hen a low-fat/high-carbohydrate diet was consumed.47

Because 1 large egg contains approximately 5.01 g total lipid
nd 213 mg cholesterol, both response groups consumed sig-
ificantly more of these 2 components during the egg as com-
ared with the placebo period. Furthermore, the consumption
f fat during the egg period was consistent with a typical
western” diet (approximately 31% of energy from total fat),
hile the placebo period was significantly lower in fat (approx-

mately 26% of energy from fat) and higher in carbohydrate.
herefore, due to the macronutrient composition of the diet
uring the egg period, a predominance of LDL-1 particles
ould be expected and was found in both male and female
yperresponders. However, male and female hyporesponders
id not experience the same increase in LDL-1 concentrations
ollowing egg consumption.

Increased intake of dietary fat has also been associated with
ncreased activities of lipoprotein lipase (LPL) and hepatic lipase
HL) in humans.48 LPL’s role in metabolism is to hydrolyze the
G components in chylomicrons and VLDL and promote the
ellular uptake of these particles. HL functions to hydrolyze the
G and phospholipids (PL) contained in LDL, which results in the
roduction of a smaller more dense particle.49 The transfer of CE
rom HDL to apo B-containing lipoproteins in exchange for TG is
ediated by CETP. Generally, increased CETP activity is re-

arded as proatherogenic. However, if an increase in CETP is not
elated to a decrease in HDL-C, as we saw in this study,16,17 this
rotein appears to function in an antiatherogenic manner by en-
ancing CE enrichment of LDL particles that can be taken up and
etabolized by the liver.50 Increased CETP activity may also

nhibit HL-mediated modification of the apo B-containing lipopro-
eins because TG-rich, not CE-rich, LDL particles are the pre-
erred substrate for this lipase. Decreased HL activity is associated
ith elevated large more buoyant LDL particles. Therefore, the

redominance of LDL-1 particles that was seen in hyperre- n
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