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Abstract: We recently reported that the inclusion of whole eggs in plant-based diets (PBD) increased
plasma choline, lutein, and zeaxanthin in individuals with metabolic syndrome (MetS). The objective
of the current study was to evaluate whether this dietary pattern would protect against oxidative
stress and low-grade inflammation, two common characteristics of MetS. We recruited 24 men and
women with MetS, who, after following a PBD for 2 weeks (baseline), were randomly allocated to
consume either two whole eggs with 70 g of spinach/day (EGG) or the equivalent amount of egg
substitute with spinach (SUB) as breakfast for 4 weeks. After a 3-week washout, they were allocated
to the alternate breakfast. We measured biomarkers of oxidation and inflammation at baseline
and at the end of each intervention. Tumor necrosis factor-alpha, interleukin-6, monocyte protein
attractant-1, liver enzymes, and C-reactive protein, as well as total antioxidant capacity, paraoxonase-1
(PON-1) activity, and other biomarkers of oxidation were not different at the end of EGG or SUB or
when compared to baseline. However, plasma malondialdehyde (MDA) concentrations were lower
(p < 0.05) during the EGG and baseline compared to SUB. In addition, the increases in dietary lutein
and zeaxanthin previously observed had a strong positive correlation with PON-1 activity (r = 0.522,
p < 0.01) only during the EGG period, whereas plasma zeaxanthin was negatively correlated with
MDA (r = −0.437, p < 0.01). The number of participants with MetS was reduced from 24 during
screening to 21, 13, and 17 during the BL, EGG, and SUB periods, respectively, indicating that eggs
were more effective in reversing the characteristics of MetS. These data suggest that adding eggs to a
PBD does not detrimentally affect inflammation or oxidative stress; on the contrary, eggs seem to
provide additional protection against the biomarkers that define MetS.

Keywords: metabolic syndrome; eggs; plant-based diet; spinach; inflammation; oxidative stress

1. Introduction

Chronic low-grade inflammation and oxidative stress that often accompany metabolic
syndrome (MetS) are significant factors causing the metabolic condition and associated
pathophysiological consequences [1]. MetS, characterized by insulin resistance, hyperten-
sion, abdominal obesity, and dyslipidemia, triggers the alteration of cell signaling pathways,
resulting in increased levels of inflammatory markers, lipid peroxides, and free radicals,
causing cell damage and eventually leading to the clinical symptoms of the condition.
Elevated products of oxidative stress as well as inflammatory markers, C-reactive protein
(CRP) [2], tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) [3] have been
documented to contribute to the pathogenesis of MetS [4].

The dietary intake of antioxidant-rich foods can reduce the adverse effects of oxidative
stress [5]. Plant-based diets (PBDs), through their antioxidant and anti-inflammatory
properties, may reduce the development and progression of MetS [6]. There is convincing
evidence that PBDs modulate immunological and inflammatory processes [7,8]. The
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effect may vary depending on the definition of vegetarianism and the individual nutrient
components included in each [9]. Still, when compared to an omnivorous diet, vegetarian
diets typically include a higher content of phytochemicals, antioxidant micronutrients such
as vitamins C and E, fiber, and reduced saturated fats, which may contribute to a protective
effect [10]. These beneficial dietary components and their metabolites help stabilize the gut
microbiome, thus providing anti-inflammatory effects [11]. The vegetarian and vegan diets
are associated with improved insulin sensitivity, reduced oxidative stress, and decreased
concentrations of CRP [6,12].

Another natural source of antioxidants is whole eggs. In addition to their exceptional
nutritional quality, eggs are rich in antioxidants such as vitamins A and E, selenium,
lutein, and zeaxanthin [13]. The lipophilic antioxidants present in the egg yolk are highly
bioavailable due to lipid content in the yolk. Eggs may provide natural sources of omega-3
fatty acids, vitamin B12, vitamin D, and bioavailable iron that are potentially deficient
nutrients in a vegetarian diet. The anti-inflammatory effects of eggs observed previously in
a carbohydrate-restricted diet [14] and after consumption of three eggs/d [15] suggest that
eggs may complement the antioxidant effects of a PBD in treating MetS.

We have previously demonstrated the complementary effect of two whole eggs for
4 weeks to this protective diet, which reduced BMI and weight with corresponding increases
in plasma HDL cholesterol (HDL-C), large HDL particles, and plasma choline, lutein, and
zeaxanthin [16]. We reported the improvements in the dietary concentration of these
nutrients and HDL-C after whole egg intake compared to egg substitutes in adults with
MetS. In this study, as an extension of these findings, we investigated whether egg intake
influenced oxidative stress and inflammation in these subjects. We hypothesized that whole
egg consumption would not exacerbate the risk factors associated with MetS, but rather
complement the PBD through its antioxidant properties as compared to egg substitutes.

2. Materials and Methods
2.1. Experimental Design

This randomized, controlled, cross-over designed dietary intervention was previously
reported [16]. After screening to meet the criteria for MetS, participants were asked to
follow a PBD (lactovegetarian) throughout the 13-week intervention. Participants were
allowed to consume dairy, vegetables, fruits, and grains while restricting the consumption
of meat, poultry, fish, and eggs other than those provided during the treatments. In
addition, after a 2-week washout (without eggs and spinach), participants were randomly
allocated to consume either two whole eggs per day (EGG) or the equivalent amount (1/2 c)
of egg substitute with spinach (70 g) as an omelet for breakfast every day for 4 weeks.
The egg substitute was egg whites from the Egg Beaters brand with zero cholesterol as
described previously [16]. Following a 3-week washout, participants were assigned to the
opposite treatment.

A registered dietitian advised the participants and ensured compliance with the diet.
The intervention scheme was reported earlier [16]. Thirty participants (49.3 ± 8 y) classi-
fied with MetS according to National Cholesterol Education Program–Adult Treatment
Panel III (NCEP-ATP III) guidelines [17] enrolled in the 13-week diet intervention. At the
screening, each participant signed the written informed consent form. With 6 dropouts,
24 participants completed the intervention. This study was registered at Clinicaltrials.gov
(protocol NCT04234334) and was approved by the University of Connecticut, Storrs Institu-
tional Review Board under protocol H19-178.

2.2. Blood Sample Collection

Blood was drawn from MetS participants at baseline (BL) (week 2) and the end of each
treatment (week 6 and week 13). After a 12 h overnight fast, blood samples were collected
into EDTA coated vacutainers and were immediately centrifuged at 2000× g for 20 min at
4 ◦C for the separation of plasma. Blood collected in vacutainers without anticoagulant was
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left to clot at room temperature for 20 min before centrifuging to separate serum. Serum
and plasma aliquots were stored at −80 ◦C until further analysis.

2.3. Liver Enzymes and C-Reactive Protein (CRP)

CRP and liver enzymes alanine transaminase (ALT) and aspartate transaminase (AST)
were measured using an automated clinical chemistry analyzer (Cobas C 111, Roche
Diagnostics, Indianapolis, IN, USA) as previously described [16,18].

2.4. Plasma Cytokines

Plasma tumor necrosis-α (TNF-α), monocyte protein attractant-1 (MCP-1), and interleukin-6
(IL-6) were measured following the manufacturer’s instructions using a commercially
available sandwich enzyme-linked immunosorbent assay (ELISA) kit (Invitrogen, Carlsbad,
CA, USA) and quantified using a BioTek Synergy microplate reader (BioTek Instruments,
Inc., Winooski, VT, USA).

2.5. Total Antioxidant Capacity (TAC)

TAC was measured by assessing the extent of oxidation of the 2,2′-azino-di-3-
ethylbenzthiazoline sulfonate (ABTS) radical. BioTek Synergy 2 Multi-Mode Microplate
Reader with Gen5 Software (BioTek Instruments, Inc.) was used to measure absorbance [19].

2.6. Glycoprotein A (GlycA)

GlycA was measured spectroscopically by proton nuclear magnetic resonance (NMR)
using the NMR LipoProfile® spectra from plasma samples [20]. This clinical biomarker
indicates the glycosylation levels of acute-phase proteins whose elevation reflects systemic
inflammation [20].

2.7. Malondialdehyde (MDA), 8-Isoprostanes, and Oxidized LDL (oxLDL)

Plasma MDA and 8-isoprostanes were measured using commercially available ELISA
kits from MyBioSource, San Diego, CA, USA and Cayman Chemical Company, Ann Arbor,
MI, USA, respectively [21]. OxLDL was measured using a solid-phase capture sandwich
ELISA from G Biosciences (St. Louis, MO, USA). Using plasma, reactions were carried
out in 96-well plates and quantified using a microplate reader (BioTek Instruments, Inc.,
Winooski, VT, USA) [22].

2.8. HDL Components—Paraoxonase-1 (PON-1) Activity and Serum Amyloid A (SAA)

PON-1 lactonase activity toward delta-valerolactone (Sigma-Aldrich, Burlington, MA,
USA) was determined [23,24] using a modification of the method described by Khersonsky
and Tawfik [25]. According to the manufacturer’s instructions, SAA was measured in
serum using a commercially available sandwich ELISA kit (Invitrogen, Carlsbad, CA, USA)
and absorbance was read at 450 nm using a microplate reader (BioTek Instruments, Inc.,
Winooski, VT, USA) as previously reported [18].

2.9. Metabolic Syndrome Evaluation

We evaluated the parameters of the metabolic syndrome (waist circumference, blood
pressure, plasma triglycerides, HDL-C, and fasting glucose) as previously reported [16].
We compared these values to those during screening to determine how many individuals
resolved their MetS across the intervention during BL, EGG, and SUB periods.

2.10. Statistical Analysis

Statistical analysis was performed using SPSS version 17, statistical software for
Windows (SPSS, Inc., Chicago, IL, USA). Significance was defined as p < 0.05 and data values
were reported as mean ± standard deviation. A repeated-measures ANOVA evaluated
differences over time (repeated measure) among BL, EGG, and SUB periods. Fisher’s test
was used to detect significant differences among groups.
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3. Results
3.1. Plasma CRP, Liver Enzymes, and Inflammatory Cytokines

The plasma concentration of CRP did not change for both EGG and SUB compared
to BL. There were no significant changes in the concentration of TNF-α, MCP-1, and IL-6
throughout the intervention. Similarly, AST and ALT remained stable and within normal
limits throughout the interventions. Data are shown in Table 1.

Table 1. Plasma concentrations of CRP, Liver Enzymes (ALT, AST), and cytokines (IL-6, MCP-1,
TNF-α) at baseline (BL) and during the EGG (egg) and SUB (egg substitute) periods *.

Parameter BL EGG SUB p Value

CRP (mg/dL) 0.25 ± 0.24 0.40 ± 0.57 0.27 ± 0.26 0.448
ALT (U/L) 28.3 ± 17.0 28.7 ± 13.8 29.4 ± 21.3 0.679
AST (U/L) 23.0 ± 7.7 23.9 ± 8.2 22.4 ± 7.6 0.494

IL-6 (pg/mL) 3.5 ± 1.0 3.8 ± 1.2 3.7 ± 1.0 0.429
MCP-1 (pg/mL) 177.1 ± 65.4 174.1 ± 84.6 171.1 ± 73.8 0.632
TNF-α (pg/mL) 7.4 ± 1.5 7.3 ± 1.4 7.4 ± 1.7 0.855

* Data are presented as mean ± SD, (n = 24); CRP: C-reactive protein, ALT: alanine transaminase, AST: aspartate
aminotransferase, IL-6: interleukin-6, MCP-1: monocyte chemoattractant protein-1, TNF-α: tumor necrosis
factorα.

3.2. HDL Components—PON-1 and SAA

SAA concentrations were not significantly different throughout the 13-week interven-
tion (BL: 5.91± 2.65 ng/mL, EGG: 6.25± 2.89 ng/mL, SUB: 6.17± 2.57 ng/mL), (Figure 1a).
Similarly, no differences were seen in PON-1 activity after EGG (8.03 ± 2.7 U/mL) and
SUB (8.04 ± 2.6 U/mL) when compared to BL (7.94 ± 2.8 U/mL) (Figure 1b). However, a
strong positive correlation between PON-1 and dietary lutein and zeaxanthin (r = 0.522,
p < 0.05) was observed during the EGG period (Figure 2). Previously, we have reported
significant increases in dietary lutein and zeaxanthin after EGG (9190 ± 1527 µg) as well as
SUB (9179 ± 2188 µg) when compared to BL (3151 ± 4382 µg) [16]. Dietary records were
analyzed using the Nutrition Data System for Research (NDSR) (Nutrition Coordinating
Center, University of Minnesota) [11].
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Figure 2. Dietary lutein and zeaxanthin correlated with PON-1, (r = 0.522, p < 0.01).

3.3. Biomarkers of Oxidative Stress—TAC, MDA, 8-Isoprostanes, GlycA, and Oxidized LDL

Data are shown in Table 2. MDA concentrations were significantly decreased at BL
and after EGG intake compared to SUB. There were no differences in the concentration of
8-isoprostanes, GlycA, and oxLDL between diets. We also found a negative correlation
between MDA concentration and plasma zeaxanthin, as depicted in Figure 3. Plasma
zeaxanthin values were previously reported [16], and they were significantly increased
after EGG treatment (93.5 ± 50.8 nmol/L) compared to SUB (73.1 ± 38 nmol/L) and BL
(68.6 ± 34.6 nmol/L).
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Table 2. Biomarkers for measuring oxidative stress at baseline (BL) and the end of the EGG and SUB
(egg substitute) periods *.

Parameter BL EGG SUB p Value

TAC (mg VCE/L) 184.0 ± 36.1 185.9 ± 40.4 172.3 ± 35.4 0.377
MDA (ng/mL) 2 397.1 ± 88.7 a 389.2 ± 96.8 a 426.2 ± 129.3 b 0.049

8-Isoprostanes (pg/mL) 55.3 ± 15.2 58.4 ± 16.4 61.8 ± 11.8 0.277
GlycA (µm/L) 432.3 ± 66.5 434.4 ± 74.2 430.8 ± 66.3 0.908

OxLDL (ng/mL) 153.9 ± 119.1 151.1 ± 125.4 175.6 ± 117.5 0.057

* Data are presented as mean± SD n = 24. 2 Values in the same row with different superscripts (a,b) are significantly
different at a p < 0.05; total antioxidant capacity (TAC), malondialdehyde (MDA), 8-isoprostanes, glycoprotein A
(GlycA), and oxidized LDL (OxLDL).

Plasma TAC was also maintained throughout the intervention (BL: 183.98± 36.11 mg VCE/L,
EGG: 185.87 ± 40.44 mg VCE/L, SUB: 172.25 ± 35.44 mg VCE/L), as shown in Figure 4a.
We also found a negative correlation between oxLDL and TAC only during the EGG period,
as shown in Figure 4b.
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3.4. Changes in MetS Criteria

The effects of a PBD at baseline and during EGG and SUB periods in resolving the
characteristics of the MetS is shown in Figure 5.

Of the 24 adults with MetS criteria enrolled in this study, 4 participants were no longer
classified as having MetS after following a PBD for 2 weeks (BL) and 7 after SUB intake.
However, EGG intake reversed the metabolic syndrome in 11 participants. Among subjects
in the EGG group, seven participants were allocated to the EGG group first and four to the
SUB group first. The individual components modified during each treatment were variable
among participants.
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4. Discussion

In this study, we found that daily intake of two eggs/day combined with spinach
for 4 weeks while following a plant-based diet lowered the lipid peroxidation product
MDA without increasing the markers of inflammation. We also found that the inclusion
of whole eggs (EGG) helps to reverse MetS when compared to a plant-based diet (BL) or
a plant-based diet including egg whites (SUB). These findings strengthen our hypothesis
that eggs in combination with a lactovegetarian diet maintain the antioxidant status of a
PBD and may reduce oxidative stress biomarkers, therefore preventing the progression of
the metabolic conditions of MetS. This is supported by the significant findings reported
earlier from this 13-week intervention, that two eggs/day complement a PBD by lowering
body weight and BMI and improving HDL-C, especially the large HDL [16]. Egg intake
improved the plasma concentrations of choline, lutein, and zeaxanthin without increasing
plasma glucose or LDL, consistent with previous studies in MetS patients [26,27].

MetS features an increased pro-oxidative and pro-inflammation state [28]. The extent
of oxidative stress is dependent on the severity of MetS. The imbalance in the antioxidative
protection against damaging free radical accumulation triggers aging by damaging cellular
functions, altering signaling pathways, and activating endothelial cell injury through in-
flammatory responses. The prevalence of MetS increases with age [29]. This relation by
itself states the urgency of improving dietary intake of antioxidants in the MetS popula-
tion to prevent age-related comorbidities. Adherence to the Mediterranean diet benefits
MetS by reducing inflammatory and oxidative stress markers while improving insulin
sensitivity [30]. Similar effects in MetS are shown with vegetarian and vegan diets com-
pared to omnivorous diets [12,31,32]. However, a vegetarian diet puts one at risk for
nutrient deficiencies in vitamin B12, vitamin D, calcium, iron, selenium, omega-3, and
protein, which are crucial for vital functions [33]. The addition of eggs fills this gap, as
evidenced by the dietary intake of our participants as described elsewhere [16].

Although MetS is associated with increased plasma CRP [2], our participants main-
tained lower concentrations throughout the intervention. Vegetarian and vegan diets are
negatively correlated with CRP [12,32,34]. Unlike previous studies of MetS with eggs
where inflammatory markers were reduced [14,15], we observed no changes in this study.
The new and more reliable marker for systemic inflammation, GlycA [20], with compar-
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atively superior reliability to CRP, also did not change throughout the intervention. No
other effects were observed by including eggs or spinach in the diet. The Multi-Ethnic
Study of Atherosclerosis (MESA) has depicted this relationship between reducing CRP
and inflammatory cytokines after a fiber-rich vegetarian diet compared to a fat-rich, di-
etary fiber-devoid omnivore diet [35]. The PBD offers more dietary fiber, which may
alter the microbiome and improve bacterial diversity [36]. The inflammation score in an
energy-restricted 8-week nutritional intervention showed that the protein source in the
diet matters in reducing cardiometabolic risk factors and was lower when consuming
vegetarian proteins [37].

Low circulating HDL-C is a criterion for MetS and is a well-documented cardiometabolic
risk factor. The vital proatherogenic function of HDL involves cholesterol efflux through
reverse-cholesterol transport from peripheral tissue to the liver, thus modulating systemic
inflammation. Systemic and vascular inflammation generated by disease conditions dis-
rupts the proatherogenic effects of HDL, converting them to dysfunctional HDL [38]. The
concentration of the inflammation-related marker SAA and antioxidant enzyme PON-1
carried by HDL are inversely related to each other and are used as indicators for HDL
functionality [22,39]. In this study, the concentration of SAA and the lactonase activity of
PON-1 were maintained throughout the intervention, even though an increase in HDL-C
was observed after EGG treatment [16]. Antioxidant carotenoids, lutein, and zeaxanthin
are mainly transported by HDL, which offers additional protective functions. We ob-
served a strong positive correlation between PON-1 and dietary lutein and zeaxanthin
only after EGG treatment, probably because eggs allow the lipid milieu to absorb these
lipophilic compounds.

PON-1 has a critical role in promoting antioxidant properties by protecting LDL from
lipid peroxidation. Lipid peroxidation refers to the oxidative degradation of lipid products,
causing cellular damage by accumulating free radicals. Evidence attests that oxidative
stress is increased in MetS due to the associated fat accumulation [40]. Insulin resistance,
dyslipidemia, and abdominal obesity associated with MetS increase the production of free
radicals, consequently raising MDA, the primary product of lipid peroxidation [41]. MDA
indicates oxidative damage to cells and, thus, is a good biological marker for oxidative
stress [42]. MDA values were higher after the SUB period than the EGG period and
BL, indicating that eggs did not increase lipid peroxidation. The increases in HDL and
corresponding increases in bioavailable carotenoids from egg yolk, both having antioxidant
functions, may have contributed to this protective effect during the EGG period. The
dietary antioxidants might have contributed to the total antioxidant capacity, leading to the
negative correlation between TAC and plasma oxidized LDL concentrations.

The underlying conditions of MetS play a crucial role in the pathogenesis of atheroscle-
rosis, causing a two-fold increase in disease risk for cardiovascular events [43]. Oxidation
of LDL initiates atherosclerotic plaque formation. Oxidative stress silently mediates this
progression. In this study, oxLDL was maintained throughout the intervention and egg
consumption did not pose a risk by increasing oxLDL. Similarly, GlycA is a reliable car-
diometabolic marker that can track the systemic acute phase responses, capturing inflamma-
tory responses and providing information about progression to type 2 diabetes [44]. TMAO,
the controversial atherogenic metabolite [45], was earlier shown to have no significant
changes after egg consumption [16,27]. This evidence strongly suggests that consumption
of two eggs/day did not detrimentally affect these key atherogenic risk factors of MetS.
The maintenance of oxLDL, TAC, and 8-isoprostanes throughout the intervention must be
due to the short duration of the diet. Long-term adherence (about 15 years) to a vegetarian
diet causes lower oxidative stress, body weight, and cholesterol than omnivorous diets [46].

The first-line therapy for MetS is through diet modification, along with physical
activity. This diet intervention motivated our participants to eat mindfully, even though
their PBD diet was ad libitum and did not change their physical activity throughout the
13 weeks. This is evidenced by the overall improvement and reversal of MetS criteria
during the diet periods. When compared to screening when all participants had at least
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three or more of the five criteria for MetS [17], the lactovegetarian diet and PBD for 2 weeks
reversed MetS in four participants. When combined with two eggs/day for 4 weeks, this
diet attenuated the symptoms and reversed MetS in 11 participants. After egg intake,
most participants improved their plasma HDL, glucose, and blood pressure. Participants’
dietary intake indicated less carbohydrate and added sugar intake during the EGG period,
which may have contributed to the wholesome and nutrient-rich PBD in reversing the
MetS criteria.

This study’s findings strengthen our previous results, suggesting that a PBD with
eggs is an effective strategy for treating MetS. We consistently found that the inclusion of
whole eggs does not adversely affect the inflammatory status but reduces the oxidative
stress, even with dietary cholesterol present, supporting eggs as an abundant source of
antioxidants. The strength of this study is the 100% compliance to the PBD maintained by
the participants throughout the intervention, even though all were habitual omnivores. The
limitation of the study was the small sample size, the dropouts, and delays in the study due
to the outbreak of COVID-19 and related circumstances. Additionally, 4 weeks might not
have been long enough to observe a statistically significant change in biomarkers. Except
for the parameters of MetS, no analyses were conducted at recruitment. This would have
depicted the changes in MetS after 13 weeks of a PBD if measured. We assume the effects
of a PBD throughout the intervention masked the impact of the eggs and the spinach that
only helped maintain the biochemical status.

5. Conclusions

These results demonstrate that the inclusion of eggs in a PBD may provide beneficial
effects in attenuating the symptoms of MetS by reducing the oxidative stress marker MDA
compared to egg substitutes. Even with the cholesterol-rich egg yolk, two whole eggs did
not increase inflammation in this at-risk population when consumed daily for 4 weeks, but
reversed MetS criteria in a higher number of participants compared to baseline or the use
of egg substitutes.
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